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T H R E E

THE 
TECHNOLOGY

T oday when we say “technology” it is often shorthand for “computer 
technology.” The Technology section of a newspaper reports on Silicon 
Valley news and reviews the latest consumer gadgets that are powered 

by bits and bytes. Of course this is not the only technology in our lives, but it 
is the one that defines our modern age. A century and a half ago, the defining 
technology was electricity and all things electric. The light bulb was literally the 
bright idea of the day. Today we have LED light bulbs that we can control with 
a smartphone app, turning on the lights when we are still on our way home, or 
creating a romantic atmosphere by changing the color and intensity of the light 
at the touch of a screen.

If we move back in time we see ages defined by their technological innovations: 
steam power, water power, or the precision use of metals that made it possible to 
create accurate timepieces and to automate the production of fine cloth. We can 
go back to the printing press, clearly a defining technology for all that came after 
it. Printing technology depended both on innovations with metals and also on 
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the development of paper-making techniques that greatly improved on previous 
writing surfaces, like sheepskin, papyrus, wax, clay, and stone.

Basically, it’s technology all of the way back—back to fire and the first stone 
axes. We naturally take for granted the technologies that precede our own age, 
and we marvel at the ones that are new.

Libraries of course have been technology-based from the beginning of their 
history. The earliest libraries that we know of were furnished with writings in the 
form of scrolls. Medieval libraries held bound manuscripts. The big leap forward 
was the Gutenberg revolution and the concomitant increase in the production of 
copies of texts. The number of books not only increased but they also become 
more affordable as a result of their abundance. Other technologies also had 
effects on libraries, such as the aforementioned development of electric lighting, 
which reduced the threat of fire and allowed readers to make use of the library 
outside of daylight hours.

In the eighteenth and nineteenth centuries, not only were more copies of 
books produced than ever before, but the numbers of new writings and new 
editions also grew. Library holdings thus increased as well, which led to difficul-
ties in keeping up with an inventory of the items held by the library. Today we 
assume that every library has a catalog, but even in the 1800s some libraries had 
no actual record of their holdings or relied on a brief author list. Much “finding” 
done in libraries at the time relied on the memory of the librarian. Charles Ammi 
Cutter, writing about the catalog of the Harvard College Library in 1869, took 
pity on the librarian overseeing a collection of 20,000 books without a proper 
catalog, who had to attempt to answer subject-based queries using only his own 
knowledge of the content of the collection.

The library catalog technology of Cutter’s day was a printed book. Printed 
book catalogs had the same advantages as books themselves: they could be pro-
duced in multiple copies and were highly portable. A library could give a copy 
of its catalog to another library, thus making it possible for users to discover, at 
a distance, that a library had the item sought. The disadvantages of the printed 
book catalog, however, became more serious as library collections grew and the 
rate of growth increased. A library catalog needed near-constant updating. Yet 
the time required to produce a printed book catalog in an era in which print-
ing required that each page be typeset meant that the printed catalog could be 
seriously out of date as it came off the printing press. Updating such a catalog 
meant reprinting it in its entirely, or staving off an expensive new edition by 
producing supplementary volumes of newly acquired works, which then made 
searching quite tedious.
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In the mid-1800s the library card catalog was already winning hearts and 
minds. Cutter attributed the development of the card catalog to Ezra Abbot, 
head of the Harvard College Library, in 1861 (Cutter 1869). Although neither 
the book catalog nor the card catalog meets all needs as efficiently as one would 
desire, the card catalog had already proven itself as an up-to-date instrument for 
library users and librarians alike. German professor Markus Krajewsky, in his book 
on the history of card files, Paper Machines (2011), shows that cards on paper 
slips had been used in earlier times, in particular by the early bibliographers and 
encyclopedists who needed to create an ordered presentation of a large number 
of individual entries. It was libraries, however, that demonstrated how useful and 
flexible the card catalog could be.

Cards were lauded by Melvil Dewey in his introduction to early editions of his 
Decimal Classification, although his classification and “relativ index” in no way 
required the use of a card system. However, the “Co-Operation Committee” of 
the newly formed American Library Association announced its decision on the 
standardization of the catalog card in Library Journal in 1877; not coincidentally, 
Dewey’s library service company, The Library Bureau, founded in 1876, was 
poised to provide the cards to libraries at a cost lower than custom-produced 
card stock. The Library Bureau soon branched out into the provision of catalog 
furniture and a variety of card-based products for a growing business records 
market. In fact, before long providing cards to libraries was only a small portion 
of The Library Bureau’s revenue as businesses and other enterprises in the United 
States and Europe turned to card systems for record-keeping. Krajewski considers 
these card systems the early precursors of the computerized database because of 
the way that they atomized data into manipulatable units, and also allowed the 
reordering of the data for different purposes.

It should be obvious that both the book catalog and the card catalog were 
themselves technologies, each with different affordances. They also were affected 
by related technological developments, such as changes in printing technologies. 
The typewriter brought greater uniformity to the card catalog than even the 
neatest “library hand” could, and undoubtedly increased the amount of infor-
mation that one could squeeze into the approximate 3" x 5" surface. When the 
Library of Congress developed printed card sets using the ALA standard size and 
offered them for sale starting in 1902, the use of the card catalog in US libraries 
was solidified.
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After Melvil Dewey, the person who had the greatest effect on library technol-
ogy was Henriette Avram, creator of the Machine Readable Cataloging (MARC) 
format. This was not only an innovation in terms of library technology, it was 
generally innovative in terms of the computing capability of the time. In the mid-
1960s, when MARC was under development, computer capabilities for handling 
textual data were very crude. To get an idea of what I mean, look at the mailing 
label on any of your magazines. You will see upper-case characters only, limited field 
sizes, and often a lack of punctuation beyond perhaps a hash mark for apartment 
numbers. This is what all data looked like in 1965. However, libraries needed 
to represent actual document titles and author names, and languages other than 
English. This meant that the library data record needed to have variable length 
fields, full punctuation, and diacritical marks. Avram delivered a standard that 
was definitely ahead of its time.

Although the primary focus of the standard was to automate the printing 
of cards for the Library of Congress’s card service, Avram worked with staff at 
Library of Congress and other libraries involved in the project to leverage the 
MARC record for other uses, such as the local printing of “new books” lists. To 
make these possible the standard included non-text fields (in MARC known as 
“fixed fields”) that could be easily used by simple sort routines. The idea that 
the catalog could be created as a computerized, online access system from such 
records was still a decade away, but Librarian of Congress L. Quincy Mumford 
announced in his foreword to Avram’s 1968 document The MARC Pilot Project 
that MARC records would be distributed beginning in that year, and that this 
“should facilitate the development of automation throughout the entire library 
community.” And it did.

Melvil Dewey did not anticipate the availability of the Library of Congress 
printed card service when he proposed the standardization of the library catalog 
card, yet it was precisely that standardization that made it possible for libraries 
across America to add LC printed cards to their catalogs. Likewise, Henriette 
Avram did not anticipate the creation of the computerized online catalog during 
her early work on the MARC format, but it was the existence of years of library 
cataloging in a machine-readable form that made the OPAC a possibility.

The next development in library catalog technology was the creation of that 
computerized catalog. It would be great to be able to say that the move from the 
card catalog to the online catalog was done mainly with the library user’s needs 
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in mind. That wasn’t my experience working on the University of California’s 
online catalog in the early 1980s. The primary motivators for that catalog were 
the need to share information about library holdings across the entire state 
university system (and the associated cost savings), and to move away from the 
expense and inefficiency of card production and the maintenance of very large 
card catalogs. At the time that the library developed the first union catalog, which 
was generated from less than a half dozen years of MARC records created on 
the systems provided by the Ohio College Library Center (later known solely as 
OCLC) and the Research Libraries’ Group’s RLIN system, the larger libraries 
in the University of California systems were running from 100,000 to 150,000 
cards behind filing into their massive card catalogs. This meant that cards entered 
the catalog about three months after the book was cataloged and shelved. For a 
major research library, having a catalog that was three months out of date, and 
only promising to get worse as library staffing decreased due to budget cuts, 
made the online catalog solution a necessity.

We, and by “we” I mean all of us in library technology during this time, created 
those first systems using the data we had, not the data we would have liked to 
have. The MARC records that we worked with were in essence the by-product 
of card production. And now, some thirty-five years later, we are still using much 
the same data even though information technology has changed greatly during 
that time, potentially affording us many opportunities for innovation. Quite 
possibly the greatest mistake made in the last two to three decades was failing 
to create a new data standard that would be more suited to modern technology 
and less an imitation of the library card in machine-readable form. The MARC 
record, designed as a format to carry bibliographic data to the printer, was hardly 
suited to database storage and manipulation. That doesn’t mean that databases 
couldn’t be created, and to be sure all online catalogs have made use of database 
technology of some type to provide search and display capabilities, but it is far 
from ideal from an information technology standpoint.

The real problem is the mismatch of the models between the carefully 
groomed text of the catalog entry and the inherent functionality of the database 
management system. The catalog data was designed to be encountered in an 
alphabetical sequence of full headings, read as strings from left to right; strings 
such as “Tolkien, J. R. R. (John Ronald Reuel), 1892–1973” or “Tonkin, Gulf 
of, Region—Commerce—History—Congresses.” Following the catalog model 
of which Charles Cutter was a primary proponent, the headings for authors, 
titles, and subjects are designed to be filed together in alphabetical order in a 
“dictionary catalog.”
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Database management systems, which are essential to permit efficient search-
ing of large amounts of data, work on an entirely different principle from the 
sequential file. A database management system is able to perform what is called 
“random access,” which is the ability to go seemingly directly to the entry or 
entries that match the query. (The actual internal mechanism of this access is 
quite operationally complex.) These entries are then “retrieved,” which means 
that they are pulled from the database as a set. A set of retrieved entries may be 
from radically different areas of the alphabetical sequence, and once retrieved are 
no longer in the context intended by the alphabetical catalog.

Database management systems include the ability to treat each word in a sen-
tence or string as a separate searchable unit. This has been accepted as a positive 
development by searchers, and is now such a common feature of searching that 
today most do not realize that it was a novelty to their elders. No longer does a 
search have to begin at the same left-anchored entry determined by the library 
cataloging rules; no longer does the user need to know to search “Tonkin, Gulf 
of . . .” and not “Gulf of Tonkin.” Oddly enough, in spite of the overwhelm-
ing use of keyword searching in library catalogs, which has been shown to be 
preferred by users even when a left-anchored string search was also available, 
library cataloging has continued its focus on headings designed for discovery via 
an alphabetical sequence. The entire basis of the discovery mechanism addressed 
by the cataloging rules has been rendered moot in the design of online catalogs, 
and the basic functioning of the online catalog does not implement the intended 
model of the card catalog. Parallel to the oft-voiced complaint that systems 
developers simply did not understand the intention of the catalog, the misun-
derstanding actually goes both ways: significant difference in retrieval methods, 
that is, sequential discovery on headings versus set retrieval on keywords, did not 
lead to any adaptation of cataloging output to facilitate the goals of the catalog 
in the new computerized environment. Library systems remain at this impasse, 
some three-and-a-half decades into the history of the online catalog. The reasons 
for this are complex and have both social and economic components.

It is not easy to explain why change was not made at this point in our tech-
nology history, but at least one of the factors was the failure to understand that 
cataloging is a response to technical possibilities. Whether the catalog is a book, 
a card file, or an online system, it can only be implemented as an available tech-
nology. Unlike most other communities, the library community continues to 
develop some key data standards that it claims are “technology neutral.” It is, 
however, obvious that any data created today will be processed by computers, 
will be managed by database software, will be searched using database search 
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capabilities, and will be accessed by users over a computer network. One ignores 
this technology at great peril.

THE PRESENT AND FUTURE

We have made the error in the past of moving to new technologies without 
examining the fit between our data and the new technology. A perfect example 
of this is the development of an XML version of the MARC record. There are 
indeed similarities between MARC and XML, primarily that both can be used 
to mark up or encode machine-readable documents. Both can also encode 
structured data, although the MARC use of fixed fields is less flexible than 
XML, which allows variable-length data throughout. MARCXML was devel-
oped as a pure serialization of the MARC format. “Serialization” means that 
the data encoding of MARC was translated directly to XML without any related 
transformation of the data itself. Although this produced a record that could 
be managed with XML-aware software, it did nothing to improve the kind of 
data that could be conveyed in library bibliographic records. It also did noth-
ing to address some of the limitations of the MARC record. The MARCXML 
standard is kept one-to-one with the original MARC record, with the single 
exception that field and record sizes are not enforced. (MARC fields are lim-
ited to a four-character length, thus to 9,999 bytes; the record itself cannot 
exceed 99,999 bytes.) But the limitation on the number of subfields to a field 
remains, even though there are fields that have no open subfields available for 
expansion. Other inconveniences also remain, such as the non-repeatability of 
the MARC fixed field information, which then forces some repeatable elements 
like languages and dates to be coded in more than one field to accommodate 
repeatability. MARCXML was never allowed to develop as its own technology, 
and therefore did not present a change. Library data in XML, rather than in 
MARCXML, could have represented a real change in capabilities. It might also 
have provided a better transition to new technology than we now have, because 
we could have resolved some of the more awkward elements of MARC over a 
decade or more, with a gradual update to the library systems that use this data. 
Today we either have to carry those practices on to our future data, or we need 
to make a great leap forward and break with our past.

We missed the XML boat, but now some are hoping to get on board the 
latest ship sailing by: the Semantic Web and its base technology, the Resource 
Description Framework (RDF). It should be noted that there is one other data 
technology development that could have been considered between XML and 
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RDF, that of object-oriented design (OO). By the early 1990s, when the FRBR 
Study Group was being formed, relational technology was no longer new and 
object-oriented technology was taking its place in many implementations. Pro-
gramming languages like Java and Python are object-oriented, and data and 
databases can also be “OO.” Library data is leap-frogging over this technology, 
or it will if it adopts RDF for its data, as it appears it might.

Unlike most of the data models that preceded it, from entity-relation to 
object-oriented, RDF does not arise from the world of business that prompted 
our previous technology upgrades. The Semantic Web, as the name implies, 
comes out of web technology. This is a significant difference from, for example, 
database technologies, because the web is an open platform and is the place where 
we put publicly accessible data, whereas databases are private and closed, housed 
within enterprises and often highly controlled in terms of access. This means that 
many of the design assumptions that drive the Semantic Web standards are quite 
different from those encountered in business data processing.

First, let’s look at where the Semantic Web comes from and what is meant by 
“semantic.” The Semantic Web comes out of a combination of web technology, 
with linking and identifying as primary requisites, and the artificial intelligence 
(AI) community, with smart “bots” as its goal. Where most of us read the term 
“semantic” as meaning “meaning,” in the AI world “semantic” refers to a com-
putable axiom, such as:

If A = B, and B = C, then A = C

Obviously, machine intelligence and human intelligence are significantly different. 
AI attempts to model human thinking by defining the world as information about 
things and rules that can be used to “understand” those things. As we know from 
the overly confident promises that have come out of the AI community since 
the dawn of computing, the world and how we humans understand it is more 
complex than it seems. Human intelligence is still a marvel that is unchallenged 
by machines, in spite of gains in such algorithm-rich areas like the game of chess.

Artificial intelligence on the World Wide Web is a more tractable problem 
than creating a robot that can navigate stairs, recognize human faces, and pass 
a Turing test, because the web is already a data abstraction with some distance 
from the sense-experienced world, and therefore more amenable to computation. 
The Semantic Web was introduced in an article in Scientific American in 2001 
by Tim Berners-Lee, founder of the World Wide Web and director of the World 
Wide Web Consortium, and his associates James Hendler and Ora Lassila. The 
article told the story of a helpful bot that could find an available doctor, check 
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your calendar, and make an appointment that fit into your schedule. Creating 
such technology over the web would require much less effort than creating this 
technology as a stand-alone system; the web already had solved the problem of 
a large distributed system capable of handling heterogeneous data and billions of 
users. The trick was to include in the web the kind of coding that would allow 
data to be used alongside the current web of documents and media files.

The technology to achieve this is all based on the Resource Description Format 
(RDF), which itself is a deceptively simple model of things and relationships 
that can be used to express very complex data. There are some particular aspects 
of RDF that are both essential and notably different from the technology that 
most of us have worked with during our careers. There isn’t space here to fully 
elucidate the technology that is RDF, but some points are key to the analysis in 
the second part of this book. Let’s begin with identifiers.

Everything being described in RDF must have a standard identifier that begins 
with “http://” followed by a domain name (e.g., “ala.org/”) and a precise 
path (conference2015). That might seem confusing, because that is the same 
prefix that is used for a uniform resource locator (URL), which is the address of 
something on the web. RDF is using the same standard for its identifiers for a 
couple of reasons: first, the mechanism to create and manage domain names on 
the web already exists, which means that it will be easy to create these identifiers; 
second, the combination of identification with location means that information 
about the thing identified can be stored on the web at that location without any 
change in technology.

RDF identifiers are intended for machines, not humans. No one wants to 
read, much less type, “http://id.loc.gov/authorities/subjects/sh85038796” 
for the Library of Congress subject heading “Dogs.” All identifiers can have 
human-readable labels, and the assumption is that in every situation where a 
human is interacting with the data, the human-readable label will be the one 
displayed. This includes input, which in many data creation scenarios in business 
applications already makes use of textual pull-down lists for easy and accurate 
input. Thus a cataloger will choose a subject heading, such as “Dogs in liter-
ature,” from a list and the data stored will be “http://id.loc.gov/authorities/
subjects/sh85038823.”

Identifiers are in a sense merely a substitution of the normalized text we use 
today, often in the form of a formatted heading, with a particular string in the 
URL format. Other changes required in the shift to RDF are more radical. One 
of the ones that is most difficult to understand is that RDF data about resources 
is not stored as separate records; instead, information about a thing is in the form 
of a graph of statements. Graphs have no boundaries; they can grow and they 
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can interconnect with other graphs where their data intersects (figure 3.1). To 
give a simple example, the identified author in a library catalog description can 
interlink with the author information page on Amazon or with the encyclope-
dic entry about the author on Wikipedia. This assumes that these systems have 
knowledge of each other’s identifiers, but that is increasingly the case: library 
authority identifiers are already found in Wikipedia entries, so this connection can 
be made. Data in RDF resembles synapses, with multiple connections that allow 
new information paths to be created as more information is added (figure 3.1).

F I G U R E  3 . 1

A graph

The next key piece of information about RDF is actually about the nature of 
the World Wide Web itself. The web is an open space where millions of people 
and corporations and governments can put information that they wish to make 
public. Most contributors to the web also have other information stored in pri-
vate data repositories. Although these private repositories may be in some way 
connected to the Internet, they are protected by user accounts and passwords, 
and some are protected through layers of digitally locked doors. The Semantic 
Web has an emphasis on the public information space, although its technology 
can also be used for privately held data.
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There are three main principles that govern the Semantic Web that are 
important for understanding the rules that are applied to Semantic Web data:

 ` the Open World Assumption
 ` the Non-Unique Name Assumption
 ` “anyone can say anything about anything”

The Open World Assumption describes the nature of the web, which is that the 
web is never complete, never done, and it may not be possible to have access to 
all of it at any one given time. What this means is that web applications must not 
rely on completeness. If your bibliographic description on the open web has no 
title, it doesn’t mean that there will never be a title, or that there hasn’t ever been 
one. You can assume that a title exists, just not in your current view. Contrast this 
to a database application that has strict control over input and output, and where 
rules governing the data are enforced: that title must be there. In a database, a 
bibliographic description with no author means that the resource has no author 
attribution. In the web environment, that negative cannot be assumed from the 
absence of the element.

The Non-Unique Name Assumption (NUNA) states that any identified thing 
can be identified with more than one identifier. This is like real web life, where I 
am identified by more than one e-mail address (one at kcoyle.net and another at 
gmail.com), an IRC handle, and a Twitter name, in addition to my social security 
number, passport number, driver’s license number, and so on, in “real life.” On 
the web you cannot assume that each identifier represents a unique entity. To 
avoid chaos, there are ways to code identifiers as identifying to the “same” or 
“different” resources, but the Non-Unique Name Assumption rules any identifier 
pairs without explicit relationships, such that you cannot draw conclusions from 
identifiers alone.

The statement that “anyone can say anything about anything” is as true for 
today’s World Wide Web as it is for the Semantic Web: there is no technical 
restriction on who can put information on the web. There is also no restriction 
on who can link to resources on the web. You may exercise content control over 
a web site that you create, but you cannot stop anyone else from linking to it. The 
same is true on the Semantic Web, where anyone can create links to your data. 
There is, however, a difference in the effect of linking on the Semantic Web as 
compared to the web of web pages, because RDF links are more meaningful than 
links between web pages. Links between web pages have a single meaning, which 
is simply “this links to that.” Semantic Web links carry a meaning to the link, 
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such as “this is a sub-class of that,” or “this is the same as/different from that.” 
These are conditions that you should keep in mind when designing your data. 
To the extent that you can predict how your data might interact with other data 
in that vast data space, you need to design your data to “play well with others.”

The basic technology of the Semantic Web is RDF. Other technologies build 
on that. One of these is the Web Ontology Language, OWL, which is the lan-
guage developed for the creation of Semantic Web vocabularies. First, yes, OWL 
should be WOL, but it is OWL. Second, the RDF documentation uses the terms 
vocabulary and ontology interchangeably. The term ontology comes out of the 
artificial intelligence community and it implies a level of rigor in the definition 
of terms and their relationships. OWL is to the Semantic Web what a metadata 
schema has been for us in the past: OWL is how you define the terms of your 
domain and how you will use those terms to create your data.

OWL is a difficult standard to understand if you are not familiar with certain 
aspects of artificial intelligence decision-making. Many of the features that are 
defined in OWL sound familiar but in fact mean something different from what 
most of us are accustomed to. OWL is designed for a particular Semantic Web 
function called “inferencing.” Inferencing allows you to draw conclusions from 
data that is present. Thus if:

Every man is a mammal
Fred is a man
Therefore, Fred is a mammal

OWL is quite a bit more sophisticated than this example implies, and includes 
concepts such as “inverse functional object property” and “negative data property 
assertion,” among many others. The purpose of OWL is to define a vocabulary 
that can be used in complex artificial intelligence work. It also includes the ability 
to define some common features of metadata languages, such as cardinality (man-
datory, repeatable) and equivalence (same as or different from). Unfortunately, 
what these features mean in OWL can be quite different from what they mean 
in metadata standards with which we are familiar.

The meaning of the OWL terms is governed by the RDF concept of classes, in 
which things being described acquire their membership in a class from the terms 
that define them. In our simple example above, Fred acquires “mammal-ness” 
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because he is described by the term “man,” which itself has been defined as being 
of class “mammal.” In artificial intelligence this mimics the human brain’s ability 
to draw conclusions from information in the environment, generalizing from 
knowledge gained in one experience to apply in other situations. The Semantic 
Web builds up knowledge from atoms of learning, which is the opposite of the 
top-down approach that is common in classifications of knowledge.

There have been controversies about OWL since its inception, because it is so 
very complex and also so easily misunderstood. Depending on your application, 
you can ignore much of that complexity, but for any OWL assertion that you 
do use you must make sure that you understand the consequences of its use. In 
particular, many of the OWL declarations about terms and classes seem identical 
to functions in familiar programming languages. A simple example mentioned 
above is cardinality. Cardinality in programming languages declares the minimum 
and maximum allowed occurrences of a data element. If the minimum cardinality 
of the element is “1,” that element is required—it must occur at least one time. 
If it is “0,” then the element is optional. If the maximum cardinality is “1,” the 
element is not repeatable, but any other number defines the number of times it 
can repeat in your data. In most programming situations, data that violates these 
rules is considered to be in error.

OWL has minimum and maximum cardinality, but their meaning has a dif-
ferent interpretation due to the application of the Open World Assumption and 
the Non-Unique Name Assumption. You can define your data as having, for 
example, a single creator for each given resource; the maximum cardinality of 
your creator element is therefore “1.” If you create or encounter data that has 
more than one creator for a single resource, this is neither an error nor even 
an inconsistency in the data. Instead, applying the rules of the Semantic Web, 
applications that interpret OWL data will conclude that all of the creator iden-
tifiers identify a single entity because your rule says that there is only one such 
entity, and that entity can have any number of identifiers. At times this OWL 
rule may come in handy because you want to find equivalent identities, but that 
presumes that the data has all been coded correctly, something that most of us 
have learned is rarely the case. This is the big “gotcha” of OWL. OWL-based 
software can examine data that exists and can return a response that the data 
either does or does not conform to the OWL rules that have been defined for 
those data elements. But OWL cannot control the creation of data that meets 
its rules; it examines but that it does not enforce, in large part because ”anyone 
can say anything about anything” and because OWL is intended to function in 
an open world that is always in flux.
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This aspect of OWL generally confuses people because the OWL rules so 
closely resemble the rules that other programming languages use for a very 
different purpose: data quality control. In fact, because people often want to 
use OWL rules in the same way that they use programming rules in closed and 
controlled environments, there is now software that applies the OWL rules in 
closed environments, treating identifiers as uniquely identifying a single entity. 
This reverses two of the main truths of the Semantic Web, which are the Open 
World Assumption and the Non-Unique Name Assumption. It also operates on 
data stores where “anyone can say anything about anything” is definitely not 
allowed. In other words, a mirror copy of the OWL language is being used in 
the same way that we have always used programming languages, but not in the 
way intended for the Semantic Web.

Within your own closed environment, such as a local database, you clearly can 
do whatever you want with your data and you can impose any kinds of rules and 
controls that serve you and your organization. But if you open that same data 
to the web, the meaning of those rules will be interpreted using the Semantic 
Web standard meanings, which means that the Open World Assumption and the 
Non-Unique Name Assumption will be applied. The actual meaning of your data 
will be radically different in those two different environments, and operations 
like searches could yield very different results. The upshot of this is that the 
same OWL-defined vocabulary should not be used in both the closed and the 
open worlds.

This conflict between the controlled data stored in one’s personal or cor-
porate database and the open environment of the web is one of the hardest 
for data designers coming from other technology environments to overcome. 
There obviously is a real need to perform quality control on data, but the basis 
of the Semantic Web is one of discovery, not control. This is a conflict that, as 
of this writing, is unresolved, both in code and in terms of best practices. One 
possible solution, proposed by the Dublin Core Metadata Initiative (DCMI), 
the same people who develop the Dublin Core metadata terms, is to separate the 
controlling aspect of the vocabulary from its basic semantics. This isn’t different 
from many existing metadata implementations: terms to be used are defined for 
their meaning, and a separate structure and rules are developed that turn those 
terms into a metadata record.

Dublin Core (DC) is a good example of this. Dublin Core terms are defined 
apart from their use in metadata. Dublin Core’s element “title” is defined simply 
as “the name of the resource.” Whether it is mandatory or optional, and whether 
or not it is repeatable, is not part of the definition of the term itself. Those 
rules would be defined in a metadata schema or in what the DCMI calls an 
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“application profile,” which is a definition of the metadata structure and rules 
for a particular application. The term can be used in different ways in different 
metadata implementations, and the DC terms are indeed used in a wide variety 
of situations. However, in all uses the term retains the same meaning. This sepa-
ration of meaning from rules results in maximum flexibility that allows the same 
terms to be used in many different applications, as Dublin Core terms are today. 
That flexibility is the positive outcome of this method. The negative outcome is 
that the separation of meaning from rules results in maximum flexibility, so that 
data sharing requires some adjustment between communities. The application 
profile, if provided in a machine-readable form, can be the basis for data shar-
ing because communities can easily understand the structure of data created by 
others. Through all of that, however, a Dublin Core title remains “the name of 
the resource” even if some communities allow only one, some more than one, 
and for some the element may be optional.

We can contrast this to the primary metadata standard used in libraries today, 
MARC 21. This standard defines the meaning of terms and also the rules for data 
quality in a single standard. This is not uncommon as a data creation and man-
agement approach, however, it is undeniably a definition of a closed data world. 
Anyone who would use the base MARC record structure and data elements with 
a different set of rules governing term meanings and cardinality would simply not 
be creating MARC 21 data, and there would be no expectation that one could 
successfully combine data created under such different sets of rules.

The final aspect of the Semantic Web that I’ll cover here is classes. We’re all 
familiar with the concept of a class from scientific taxonomy and classification 
systems. In those systems we assign things to classes to give them the meaning 
of the class, putting ourselves and cats in the class “mammals,” and books on 
mammals in one of the sub-classes of biology. Classes have a different meaning 
and work differently in the Semantic Web; they are not categories or boxes to 
put things into, but are meaningful information about things that can be used in 
various contexts. Classes are not exclusive in their nature, and anyone or anything 
can have the qualities of more than one class. This is much like the real world, 
where a person can be an employee in one context, a parent in another, and a 
volunteer firefighter in yet another. Rather than assigning a thing to a class, the 
class is deduced based on how something is described. Our rules may say that 
persons with paychecks are employees, those with children are parents, and those 
who are members of Volunteer Brigade 7 are volunteer firefighters, and anyone 
can be all three. By attributing characteristics to the thing we are describing, we 
build up our world by describing it. This, too, fits into the methods of artificial 
intelligence where their creations must be able to make deductions about newly 
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encountered things in the world based on information, as we do in real life. We 
recognize chairs as chairs even if we haven’t seen a particular chair before. We 
understand that a person is a police officer because anyone wearing that uniform 
is a police officer, even if we haven’t seen that person before. We are moved to 
open the door for a person carrying packages because we know that it’s hard to 
open a door when your hands are full, in spite of not having been in this exact 
situation (same person, same door, same packages) before. All of this computation 
happens quickly and naturally in the human brain, and some of it can be imitated 
through code if the right information is given about things we describe on the web.

The preceding describes some of the fundamentals of the Semantic Web. The 
Semantic Web is implemented as linked data, a set of common practices for data 
on the web. One of these practices, the use of http-based identifiers, has been 
discussed above. Other practices have to do with making sure that your data can 
be used in the open environment of the World Wide Web. There are standard 
ways to define your metadata so that others can understand it and potentially 
use it. Linked data is a mix-and-match technology, and people are encouraged 
to make use of metadata definitions that exist rather than inventing their own. 
Any description can be made up of metadata from a number of different sources, 
and can use descriptive elements found anywhere on the open web.

From this description you can undoubtedly conclude that a future library data 
standard using linked data would look considerably different from the data we 
have today. The purpose of linked data is both discovery, through hyperlinks, and 
new knowledge creation, by linking between previously separate communities 
and their data stores. Those looking at linked data for libraries are focused on 
the library catalog and its discovery function. Our current catalog data is very 
different in its goals and content from data that would play well in a linked data 
environment. The challenge for us is to make this transition intelligently, and 
in a way that serves library users. The remainder of this book looks at current 
efforts with that challenge in mind.
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